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Stability exchanges between periodic orbits in a Hamiltonian dynamical system
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Exchange of stability between periodic orbits of the same winding number is observed in a one-
parameter family of quartic potentials. We use numerical simulations to study the exchanges that
occur between two values of the parameter for which the system is integrable. The relevance for the
survival of Kolmogorov-Arnold-Moser tori is briefly discussed and parallels are drawn to a similar
phenomenon earlier observed for area-preserving maps.

PACS number(s): 05.45.4+b

I. INTRODUCTION

In this article we report a remarkable phenomenon that
we have observed in a system described by the Hamilto-
nian

€
H =3 +p)) + 1" +y") + 52%* (1)

At ¢ = 0 the system is integrable and the trajectories
are marginally stable and form so-called invariant circles.
According to linear theory a typical trajectory grows sta-
ble (or unstable) linearly in e. In numerical simulations,
however, the trajectories turn out to oscillate between
stability and instability even for very small values of e,
indicating a rapid breakdown of the linear theory. The
existence of the invariant circles is in some sense pro-
longed by the stability oscillations since the trajectories
are forced to remain almost marginally stable.

During the last decade, a considerable fraction of the
work on Hamiltonian chaotics has been centered on the
question: when does the last invariant circle in the stan-
dard map disappear [1-5]. The reason for studying maps
rather than Hamiltonian flows themselves is often a ques-
tion of computational economy. However, Hamiltonian
flows are interesting on their own, since we often do not
know if discrete mappings really represent generic behav-
ior of the continuous systems. This serves as a motivation
for studying the phenomenon described above, although
a similar phenomenon has already been observed for area-
preserving maps.

As background and for defining some useful concepts
let us begin by briefly discussing maps. The standard
map is defined by

Ont1=0p +1n — f(en), (2)

Tn+l = Tn — f(gn),
where f(0) = (K/2m)sin(276). Since f(6) is periodic,
one may regard the map as acting on a cylinder. If the
limit Q = lim,, o0 (6n — 6o)/n exists, Q is defined as the
winding number. Periodic points with a rational wind-
ing number, Q = m/n, typically lie in a chain consist-
ing of an alternating sequence of hyperbolic and elliptic
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periodic points. The elliptic points are surrounded by
islands with quasiperiodic motion, which in turn are sur-
rounded by chaotic motion. If € is irrational the corre-
sponding iterates of the map lies on an invariant circle.
The existence of invariant circles with irrational wind-
ing numbers is ensured by the Kolmogorov-Arnold-Moser
(KAM) theorem, provided the perturbation is sufficiently
weak. However, numerical experience shows that irra-
tional curves survive much larger perturbations than the
rigorously established bounds.

It is generally believed that the last invariant circle
to be destroyed as a perturbation is increased, has the
inverse golden mean, w = (v/5 —1)/2, as a winding num-
ber. There is numerical evidence [2] that this circle exists
when K < K. =~ 0.971635. Invariant circles of the stan-
dard map and maps of similar topology form unpenetrat-
able barriers for the chaotic trajectories of the map and
each one of the invariant circles divide the cylinder into
two separate halves. When K > K, the last such bar-
rier disappears and one says that connected stochasticity
occurs. This transition is most easily studied by means
of the residue criterion [2]. The basic idea is that any
irrational may be approximated by rationals to any de-
gree of accuracy. The fastest converging sequence of ap-
proximating rationals my/ny, N = 1,2,... is given by
continued-fraction expansions. One now studies the se-
quence of residues, Ry = [2—Tr(My)]/4, where My are
the stability matrices for the corresponding periodic or-
bits. If the invariant circle exists, then R — 0 as N — oo,
but when it does not exist R — +oo.

If the map is generalized to a two-parameter system [6,
7], one could expect the critical point K = K, to be gen-
eralized to a smooth critical line in the parameter plane.
But what one really finds in this, and in related systems,
is a fractal set of cusps [6-10]. Associated with the cusp
structure one observes a peculiar phenomenon. It seems
as if the elliptic and hyperbolic periodic points in a chain
sometimes suddenly changes identity. Assuming that we
move along a curve in the parameter plane, a closer in-
spection yields that at some parameter value the elliptic
(hyperbolic) point bifurcates into one hyperbolic (ellip-
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FIG. 1.
hyperbolic exchange orbit in principle may look. The hyper-
bolic orbits on a symmetry axis (a) change to elliptic ones
emitting two hyperbolic periodic orbits each (b). These start
to move to the nearby elliptic orbits (c) and change them to
hyperbolic (d).

An example of how a stability exchange with a

tic) and two elliptic (hyperbolic). These newly created
cycles start to move to the nearby hyperbolic (elliptic)
point and change this to an elliptic (hyperbolic) point [7,
11]. In Fig. 1 it is shown how such an exchange, with a hy-
perbolic exchange orbit, may look. This process (which
very much resembles particle exchange in quantum-field
theories) is important for the recurrence of the nearby
KAM circle [12], since during the process the residue of
the nearby periodic orbit will remain close to 0.

II. STABILITY EXCHANGES IN A DYNAMICAL
SYSTEM

We now turn to the dynamical system described by
the Hamiltonian in Eq. (1). The Hamiltonian has the
following symmetries:

(1) The potential is invariant under the symmetry
group C4,. When € = 1, the symmetry degenerates to
the full O(2) rotation symmetry.

(2) The potential is invariant under the parameter ex-
change € — (3 — €)/(1 + ¢€) followed by a /4 rotation
of the configuration plane and a simple rescaling of the
length scale.

(3) The system is symmetric under time reversal since
the Hamiltonian is even in the momenta.

When ¢ = 0 (and equivalently ¢ = 3) the system is
integrable due to separability and when € = 1 due to the
rotational symmetry. In the limit ¢ — oo (and equiva-
lently when ¢ — —1), we obtain the frequently studied
z2y? model where almost the entire phase space is filled
by chaotic trajectories, c.f. Ref. [13]. The Hamiltonian

is such that any rescaling of energy can be obtained by
rescaling time and length, and it is thereby sufficient to
study just one energy. We always use £ = 0.5 in our
numerical simulations.

A. The integrable case € = 0

In this case the system is separable and we may trans-
form the canonical pairs (z,p;) and (y,p,) to action-
angle variables (I;,6;) and (I,,6,). The Hamiltonian
now reads

H=y(I3+1}3) (3)

where v is a constant involving an elliptic integral.
Each choice of I, I, corresponds to an invariant torus,
and the angular frequencies are given by

. 8H
0. = oI, ~

4.1/3 )
7§Ii/ , i=z,y . (4)
A torus is periodic whenever Q = 4, / 0;, = mg/my, where
mg and m,, are integers. This means that the orbit closes
onto itself after m, oscillations in the z direction and m,
in the y direction. We will refer to m, and m, as the
resonance numbers.

An area-preserving map (Tn41,Pz,n+1) = T(Tn,Pzn)
is defined in the usual way by the Poincaré section y =
0,py > 0. The periodic (or resonant) torus defined by
the numbers m,, my cut the Poincaré section along the
curve
ma
ms +my

(%)

1z + et =F

Any point along this curve is a fixed point under the map
Tmy,

B. Small €

When the perturbation is small the usual chain of is-
lands will appear along the curve (5), cf., e.g., Refs. [14,
15]. By the following argument one immediately realizes
that there are always periodic points (i.e., fixed points
under 7™v) on the p, and z axis. Suppose there is a
periodic point at (z,p;). Then there are, for symmetry
reasons, periodic points of the same kind (hyperbolic or
elliptic) at (—z,pz), (z,—pz), and (—z,—p;). Between
any two of them there has to be an odd number of peri-
odic points, and one of these has to lie on the axis, again
for symmetry reasons.

Let us now assume € to be small and positive. One
may then show, by first-order perturbation theory (cf.,
e.g., Ref. [14]), that there are exactly one hyperbolic (un-
stable) and one elliptic (stable) orbit around any ratio-
nal torus, thus regarding orbits related by symmetries
as one and the same. An exception is the elliptic or-
bit (mg,my) = (0,1), which has no hyperbolic partner.
From first-order perturbation theory we find the follow-
ing simple rules:

(1) The orbit with a periodic point on the x axes is
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stable if m, is odd and unstable if m, is even.

(2) The orbit with a periodic point on the p, axes is
stable if mg 4+ my is odd and unstable if m; +m, is even.

We now want to study numerically how the stability
of these orbits vary with €. Since we know the approx-
imate position of the fixed points it is straightforward
to exactly localize them with a two-dimensional Newton-
Raphson algorithm, and compute their residues for differ-
ent perturbation strengths. The equations of motion are
integrated with a fourth-order Runge-Kutta method us-
ing a precision of 10710 (in some cases 10~7 is sufficient).
These stable and unstable orbits will be called (mg, my)s
and (mg, my)u, respectively. Due to the z < y symme-
try we only consider the resonances m; < my in the
following.

We find that generally, if m; > 1, the orbits oscillate
between being hyperbolic and elliptic and that first-order
perturbation theory breaks down at extremely small per-
turbations. The residue for the (3, 5) resonance as a func-
tion of € is displayed in Fig. 2. In the figure it looks
as if the (3,5)s and the (3,5)u crosses the R = 0 axis
at the same € value. A closer inspection reveals that
the exchange of stabilities is mediated by an exchange
orbit in the way described above. For the (2,3) reso-
nance an elliptic exchange orbit is born by the (2,3)s
at € =~ 0.0554788, moves quickly along what used to
be an invariant curve, and is absorbed by the (2,3)u at
€ ~ 0.0554822. The (2, 3)s and (2, 3)u orbits remain on
the axis, as they have to, and move very little along the
axis during the exchange. The € values for the exchanges
for a number of resonances are displayed in Table I. The
exchanges take place during extremely small intervals in
e so the accuracy in the table holds for both (mg,my)s
and (mg, my)u. Generally the residue is very symmetric
around zero and in the following discussion we will often
neglect the small asymmetry.

Empirically we find that the number of stability ex-
changes is equal to m, — 1, and that they all occur at
positive e. We also calculate the slope of R(e) to first-
order in € so we can recognize the region where first-order
theory holds and no further crossings are to be found.

Why does the exchange phenomenon only occur for
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FIG. 2. Residues for the two orbits (3,5)s and (3,5)u.

The approximation given by linear theory is also plotted in

(a).

€ > 0? In the range 0 > € > —1 the system changes,
in some sense, monotonously from integrability to chaos.
But in the range 0 < € < 1 we move from one integrable
case to another (the chaotic fraction of a Poincaré plot

TABLE 1. Approximate values for the crossings of the R = 0 axis, where “-” denotes possible crossings that are not resolved.
The two rightmost columns give the points where the orbits bifurcate with (0, 1) according to numerical simulations and theory
[Eq. (9)]-

€bif
Mg my €cross Num. Theor.
2 3 0.0005548 0.63 0.632
2 5 0.00049 0.24 0.245
2 7 0.0001 0.127 0.127
3 4 0.0011 0.0098243 0.76 0.764
3 5 0.00037 0.006529 0.52 0.526
3 7 (0.0001) 0.0008 0.28 0.279
4 5 0.0003 0.00251 0.012251 0.83 0.838
4 7 - - 0.0068 0.48 0.481
5 6 - - 0.0035 0.01367 0.88 0.883
5 7 — - 0.005 0.011 0.71 0.708
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thus never exceeds 10% [16]). May the exchange phe-
nomenon be related to this transition? We will see that
this transition will mean a major reorganization of pe-
riodic orbits because of the change of symmetry groups.
Let us first briefly discuss the integrable case € = 1.

C. The integrable case e = 1

Due to the rotational symmetry the angular momen-
tum, L = r2¢, where (z,y) = r[cos(4),sin(¢)], is now a
constant of motion. The Hamiltonian reads
1L2
377 + 711'7'4 , (6)
where p, = 7. The Poincaré cut y = 0 means ¢ = 0 (if
z > 0), so in the surface of section we have £ = r and
pz = pr. The invariant curves under the map are given
by

H=1p2+

1,2 172 14_E 7
§pz+5§+zw =, (M

as illustrated in Fig. 3(c). In the center of the invariant

FIG. 3. The Poincaré plot at the two parameter values
(e = 0 and € = 1) for which the system is integrable and at
one intermediate value (e = 0.5).

1005

curves lies the (1,1)s orbit with no oscillations in the ra-
dial directions and with I = Ly, = (%)3/ 4\/2E. When
L = 0 all orbits have to go through the origin and their
periodic points thereby lie on the line z = 0.

D. The transition 0<e<1

For general € there are rigorous results, due to Yoshida
[17], concerning the two orbits along the lines y = 0 and
y = z. According to the previously defined coding (for
the small positive € case) these are the (0,1) and (1,1)u,
respectively. They exist for all € values and the traces of
the stability matrices are given by [17]

(v = 0) Tx(M) = 2vZ cos(vI T 8e5),

(y = z) Te(M) = 2v/2cos[\/1+ 8B —¢€) /(1 + €)%].
(8)

We note that in the range 0 < € < 1 the first of them is
stable and the second unstable and when e =0 and e = 1
they are marginally stable. The invariant line £ = 0 in
the Poincaré section in the € = 1 case (corresponding to
L = 0) will be split up into the periodic points of these
two orbits when e is slightly changed.

We also see that all periodic orbits in the ¢ ~ 1
case with L # 0 have the same winding number as the
(1,1)s orbit (i.e., the simple rotation) with respect to the
Poincaré section y = 0. Indeed, they are found to be born
by higher-order bifurcations (or n-uplings, cf. [18]) from
(1,1)s. This orbit also exists for any € and in the case
€ = 1 it is the one with L = Ly,,x. All the other orbits
from the € ~ 0 case have disappeared by bifurcating with
the (0, 1) orbit, and these higher-order bifurcations take
place when Tr(M) = 2cos(mmg/m,). We will refer to
these bifurcations as prunings in the following. From Eq.
(8) we can calculate exactly when this happens,

V2 cos (m%) = cos (%w) . 9)

This is found to be consistent with the numerical findings,
cf. Table I. The phase-space plots in Fig. 3 illustrate the
transition from € = 0 to € = 1. It is seen how the island
around the origin [the periodic point of (0, 1)] is shrinking
as € increases, whereas the islands around the fixed points
of (1,1)s are growing.

The behavior of the residue R(e) close to the bifurca-
tion point ep;s is given by R(e) = C(myg, my)(epis — €)™.
This result may be obtained by analyzing the normal
form, taking care of the symmetries of the problem, as in
Ref. [19], and it also agrees with our numerical data. We
will now see that the residue, as a function of ¢, is well
approximated by a polynomial. We therefore make the
ansatz

€ my me—1 €
Rle)=(1—— ke 1- y
(<) ( Cbif) H ( €cross,i)

i=1

(10)

where the factor k is obtained from first-order theory,
€cross,s 1S the value for the ith crossing which is obtained
numerically, and epis is given by Eq. (9). We see from
Fig. 4 that this simple formula surprisingly well describes
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FIG. 4. The modulus of the residue as a function of € for

the (3,5)u orbit (full line) plotted together with the modulus
of the polynomial given by Eq. (10) (dashed line). The residue
of the (3, 5)s orbit is not plotted since its deviation from the
(3,5)u orbit is negligible compared to the deviation from the
polynomial.

Fig. 4 that this simple formula surprisingly well describes
the behavior of R(e) both for positive and negative e. For
negative € the agreement is good, at least as long as the
fraction of phase space covered by chaotic trajectories
is still small, cf. Ref. [16]. This means the knowledge
of the behavior at small € (that is k¥ and ecross,;) yields
a very good value for the constant C(mg, m,) describing

the behavior close to the pruning. This indicates that the
stability exchanges and the pruning are intimately con-
nected. There is another circumstance supporting this
connection. The number of stability exchanges occur-
ring for the (mz, my) resonance is m; — 1, i.e., equal to
the number of resonances with period m, that are killed
by bifurcation before the resonance (mg, my) itself, al-
though the stability exchanges occur well before these
bifurcations.

III. CONCLUDING REMARKS

The early breakdown of perturbation theory for this
system may be understood as follows. When analyzing
the motion around a resonant torus for small € one ex-
pands the perturbation into a Fourier series. All Fourier
terms except the resonant one are averaged away for
small enough e. But, the sequence of Fourier coefficients
decreases exponentially. This means that the terms that
are assumed to disappear through the averaging proce-
dure are generally much bigger than the resonant term
itself, and first-order theory thereby breaks down very
early.

In this paper we have argued that there is a connec-
tion between the exchange of stabilities and the transition
from one integrable subcase to another. This coherent
behavior over orders of magnitude in the perturbation
illustrates well the difficulties of perturbation theory and
the problem of establishing bounds for the survival of
KAM tori. We find it likely that similar exchanges occur
around € = 1 as well as for many other systems.

ACKNOWLEDGMENT

We would like to thank Jukka Ketoja for introducing
us to his work on the generalized standard map.

[1] B. V. Chirikov, Phys. Rep. 52, 263 (1979).
[2] J. M. Greene, J. Math. Phys. 20, 1183 (1979).
[3] R. S. MacKay, Physica D 7, 462 (1983).
[4] J. M. Mather, Erg. Theor. Dyn. Sys. 4, 301 (1984).
[5] R. S. MacKay and L. C. Percival, Commun. Math. Phys.
98, 469 (1985).
[6] J. A. Ketoja and R. S. MacKay, Physica D 35, 318
(1989).
[7] J. Wilbrink, Physica D 26, 358 (1987).
[8] J. A. Ketoja, Phys. Rev. A 42, 775 (1990).
[9] J. Wilbrink, Nonlinearity 3, 567 (1990).
[10] H. Urbschat, Phys. Rev. Lett. 54, 588 (1985).
[11] R. C. Black and I. L. Satija, Phys. Rev. Lett. 65, 1 (1990).
[12] B. Hu, J. Shi, and S.-Y. Kim, J. Stat. Phys. 62, 631

(1991).

[13] P. Dahlqgvist and G. Russberg, Phys. Rev. Lett. 65, 2837
(1990).

[14] M. C. Gutzwiller, Chaos in Classical and Quantum Me-
chanics (Springer-Verlag, New York, 1990).

[15] Hamiltonian Dynamical Systems, edited by R. S.
MacKay and J. D. Meiss (Hilger, Bristol, 1987).

[16] N. Caranicolas and C. Vozikis, Celest. Mech. 40, 35
(1974).

[17] H. Yoshida, Celest. Mech. 32, 73 (1984).

(18] J. M. Greene, R. S. MacKay, F. Vivaldi, and M. J. Feigen-
baum, Physica D 3, 468 (1981).

[19] M. A. M. de Aguiar, C. P. Malta, M. Baranger, and
K. T. R. Davies, Ann. Phys. (N.Y.) 180, 167 (1987).



